Thc Credit V1 91l
Click to purchase paper as a non-member or loginas an AES member.If your company or school subscribes to the E-Library then switch to the institutional version.If you are not an AES member and would like to subscribe to the E-Library then Join the AES!
Thc Credit V1 91l
We investigated changes in soil carbon (C) cycling with reforestation across a long-term, replicated chronosequence of tropical secondary forests regrowing on abandoned pastures. We applied CP MAS 13C NMR spectroscopy and radiocarbon modeling to soil density fractions from the top 10 cm to track changes in C chemistry and turnover during...
We investigated changes in soil carbon (C) cycling with reforestation across a long-term, replicated chronosequence of tropical secondary forests regrowing on abandoned pastures. We applied CP MAS 13C NMR spectroscopy and radiocarbon modeling to soil density fractions from the top 10 cm to track changes in C chemistry and turnover during secondary forest establishment...
Plant community succession alters the quantity and chemistry of organic inputs to soils. These differences in organic input may trigger changes in soil fertility and fauna1 activity. We examined earthworm density and community structure along a successional sequence of plant communities in abandoned tropical pastures in Puerto Rico. The chronological sequence of these...
Our research takes advantage of a historical trend in natural reforestation of abandoned tropical pastures to examine changes in soil carbon (C) during 80 years of secondary forest regrowth. We combined a chronosequence...
Knoke, Thomas; Bendix, Jörg; Pohle, Perdita; Hamer, Ute; Hildebrandt, Patrick; Roos, Kristin; Gerique, Andrés; Sandoval, María L; Breuer, Lutz; Tischer, Alexander; Silva, Brenner; Calvas, Baltazar; Aguirre, Nikolay; Castro, Luz M; Windhorst, David; Weber, Michael; Stimm, Bernd; Günter, Sven; Palomeque, Ximena; Mora, Julio; Mosandl, Reinhard; Beck, Erwin
Increasing demands for livelihood resources in tropical rural areas have led to progressive clearing of biodiverse natural forests. Restoration of abandoned farmlands could counter this process. However, as aims and modes of restoration differ in their ecological and socio-economic value, the assessment of achievable ecosystem functions and benefits requires holistic investigation. Here we combine the results from multidisciplinary research for a unique assessment based on a normalization of 23 ecological, economic and social indicators for four restoration options in the tropical Andes of Ecuador. A comparison of the outcomes among afforestation with native alder or exotic pine, pasture restoration with either low-input or intense management and the abandoned status quo shows that both variants of afforestation and intense pasture use improve the ecological value, but low-input pasture does not. Economic indicators favour either afforestation or intense pasturing. Both Mestizo and indigenous Saraguro settlers are more inclined to opt for afforestation.
Knoke, Thomas; Bendix, Jörg; Pohle, Perdita; Hamer, Ute; Hildebrandt, Patrick; Roos, Kristin; Gerique, Andrés; Sandoval, María L.; Breuer, Lutz; Tischer, Alexander; Silva, Brenner; Calvas, Baltazar; Aguirre, Nikolay; Castro, Luz M.; Windhorst, David; Weber, Michael; Stimm, Bernd; Günter, Sven; Palomeque, Ximena; Mora, Julio; Mosandl, Reinhard; Beck, Erwin
Increasing demands for livelihood resources in tropical rural areas have led to progressive clearing of biodiverse natural forests. Restoration of abandoned farmlands could counter this process. However, as aims and modes of restoration differ in their ecological and socio-economic value, the assessment of achievable ecosystem functions and benefits requires holistic investigation. Here we combine the results from multidisciplinary research for a unique assessment based on a normalization of 23 ecological, economic and social indicators for four restoration options in the tropical Andes of Ecuador. A comparison of the outcomes among afforestation with native alder or exotic pine, pasture restoration with either low-input or intense management and the abandoned status quo shows that both variants of afforestation and intense pasture use improve the ecological value, but low-input pasture does not. Economic indicators favour either afforestation or intense pasturing. Both Mestizo and indigenous Saraguro settlers are more inclined to opt for afforestation. PMID:25425182
Nitrogen (N) plays two important roles in Earth's climate. As a plant nutrient, the availability of N affects plant growth and the uptake of carbon (C) from the atmosphere into plant biomass. The accumulation of C in long-lived biomass and in soils contributes to reducing the amount of CO2 in the atmosphere. Secondly, excess N can lead to the production of N2O, which is a more potent greenhouse than CO2. Humans have altered the cycling of N in terrestrial ecosystems, affecting their potential to sequester C and help mitigate climate change. Land-use change, specifically deforestation and reforestation, can affect N availability for plant growth and N2O production. Long-term agricultural use can deplete nitrogen sources, even in tropical soils where N is not expected to limit productivity. Secondary succession and reforestation can allow for the recovery of N stocks and fluxes, with implications for C cycling and N2O emissions. N limitation in pastures and early successional forests increases the demand for N-fixing tree species, but previous research has shown that there is a greater abundance of N-fixing species in older forests (Batterman et. al 2013). Successional trends in N mineralization and denitrification vary across studies, with some showing greater rates in agricultural soils or in mature forest soils, compared to early successional sites. Here we examine changes in N-fixing species, above and belowground N pools, and N cycling rates in secondary forests on former pastures on Oxisols in the wet tropical forest life zone of Puerto Rico. The availability of a long-term well-replicated chronosequence provides us with the opportunity to study decadal trends in N processes during forest recovery after agricultural abandonment.
This paper reports baseline soil carbon stocks from a field survey of 19 sites; 8 pairs/triplet in the Monaro region of New South Wales. Site comparisons were selected by the Monaro Farming Systems group to demonstrate the influence of land management on soil carbon, and included: nutrient management, liming, pasture age and cropping history. Soil carbon stocks varied with parent material and with land management. The fertilised (phosphorus) native perennial pasture had a greater stock of soil carbon compared with the unfertilised site; 46.8 vs 40.4 Mg.C.ha to 0.50 m. However, the introduced perennial pasture which had been limed had a lower stock of soil carbon compared with the unlimed site; 62.8 vs 66.7 Mg.C.ha to 0.50 m. There was a greater stock of soil carbon under two of the three younger (35 yr old) pastures. Cropped sites did not have lower soil carbon stocks at all sites; however, this survey was conducted after three years of above average annual rainfall and most sites had been cropped for less than three years. At all sites more than 20% of the total carbon stock to 0.50 m was in the 0.30 to 0.50 m soil layer highlighting the importance of considering this soil layer when investigating the implications of land management on soil carbon. Our baseline data indicates that nutrient management may increase soil carbon under perennial pastures and highlights the importance of perennial pastures for soil carbon sequestration regardless of age.
We applied CP MAS 13C-NMR spectroscopy and radiocarbon modeling to soil C density fractions to track changes in the quality and turnover of C with forest regrowth on former pasturelands. Our results showed that inter-aggregate, unattached particulate organic C (free light fraction) and C located inside soil aggregates (occluded light fraction) represent distinct soil C pools. The signal intensity of the O-alkyl region, representing cellulose, decreased with mineral-association, while alkyl C, attributed to waxy compounds and microbially resynthesized lipids, increased from the free to the occluded light fractions. The alkyl/O-alkyl ratio changed consistently with changes in C-to-N and δ15N across different land cover types, and thus appears to be a reliable index of humification. In contrast to cellulose, proteins, lipids and lignin did not show any consistent trends, suggesting different controls on their decomposition. Greater variability in the chemical makeup of the occluded light fraction suggests that it represents material in different stages of decay. Mean residence times (MRT) of the free light C were significantly shorter (4.3 0.5 yrs) than for the occluded fraction (7.3 0.8 yrs). The occluded fraction in active pastures and secondary forests in the earliest stage of succession had shorter MRT than in primary forests and older secondary forests, which would be explained by lower aggregate stability and faster cycling rates in disturbed versus undisturbed soils. The mineral associated C in the disturbed soils had slower cycling C (MRT = 98.9 10.6 yrs) than the undisturbed sites (65.8 2.1 yrs), most likely due to a preferential loss of labile C in the first. Incorporation of C into soil aggregates afforded some protection from decomposition, but the main mechanism of stabilization was direct mineral association. As the sorptive capacity of a soil is dependent on its mineral composition, it appears that the Oxisols at our sites have reached
Phosphorus (P) is widely believed to limit plant growth and organic matter storage in a large fraction of the world's lowland tropical rainforests. We investigated how the most common land use change in such forests, conversion to cattle pasture, affects soil P fractions along forest to pasture chronosequences in the central Brazilian Amazon and in southwestern Costa Rica. Our sites represent a broad range in rainfall, soil type, management strategies, and total soil P (45.2 - 1228.0 microng P / g soil), yet we found some unexpected and at times strikingly similar changes in soil P in all sites. In the Brazilian sites, where rainfall is relatively low and pasture management is more intense than in the Costa Rican sites, significant losses in total soil P and soil organic carbon (SOC) were seen with pasture age on both fine-textured oxisol and highly sandy entisol soils. However, P losses were largely from occluded, inorganic soil P fractions, while organic forms of soil P remained constant or increased with pasture age, despite the declines in SOC. In Costa Rica, SOC remained constant across the oxisol sites and increased from forest to pasture on the mollisols, while total soil P increased with pasture age in both sequences. The increases in total soil P were largely due to changes in organic P; occluded soil P increased only slightly in the mollisols, and remained unchanged in the older oxisols. We suggest that changes in the composition and/or the primary limiting resources of the soil microbial community may drive the changes in organic P. We also present a new conceptual model for changes in soil P following deforestation to cattle pasture. 350c69d7ab